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Chapter 4

Ekman layer transports, Ekman pumping, and the Sverdrup balance

Geostrophic flow, or the flow produced by a balance between the pressure gradient force
and the Coriolis force, is frictionless flow. But momentum from the wind field is
transferred into the ocean by friction; so frictional forces must be important in the surface
boundary layer. The dynamics of this layer are best understood if it is assumed initially that
the ocean interior is at rest, i.e. all isopycnal (and, as a consequence, all isobaric) surfaces
are flat and steric height is constant everywhere. The balance of forces in the surface layer is
then purely between the frictional force which transports momentum downwards, and the
Coriolis force.

Ekman layer transports

The details of the flow in the surface layer, known as the Ekman drift after its first
investigator, are complicated and depend on detailed knowledge of the coefficients of
turbulent mixing. If fluctuations of periods shorter than a day are eliminated it is found that
the current  moves at an angle to the wind, turning further away from the wind direction and
becoming weaker with depth. (Any of the text books mentioned in earlier chapters can be
consulted for a description of the Ekman layer.) For the purpose of regional oceanography it
is important to note that for a determination of total transport in the surface layer,
knowledge about the details of the turbulent mixing process is not necessary. Theoretical
analysis gives a relationship between the wind stress and the depth-integrated flow that
develops in response to the wind which we formulate as

Rule 3: The wind-driven component of transport in the
surface boundary or Ekman layer is directed perpendicular
to the mean wind stress, to the left of the wind stress in
the southern hemisphere and to the right in the northern
hemisphere.

The magnitude of the Ekman layer transport Me  is given by:

| Me | = | τ / f |  . (4.1)

Here, Me is the wind-generated mass transport per unit width integrated over the depth of
the Ekman layer, with dimensions kg m-1 s-1; τ is the wind stress, and f  the Coriolis
parameter introduced earlier. The unit width is measured across the transport direction, i.e.
in the direction of the wind stress. The difference between the wind stress direction and the
direction of Me develops because the Coriolis force acts perpendicular to the water
movement; Rule 3 ensures that it opposes the wind stress, and eqn (4.1) ensures that it
balances it in magnitude.

If we now relax the initial assumption of flat isopycnal surfaces, a pressure gradient force
will be present throughout the water column, up to the surface, and geostrophic flow will
develop. Me is then the additional, non-geostrophic transport in the Ekman layer. As with
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our Rule 1 we note here again that our rules are not applicable near the equator, where
according to eqn (4.1) Ekman layer transport grows beyond all bounds. In practical
applications eqn (4.1) is valid to within about 2° of the equator, where quite large Ekman
transports do occur in response to quite modest wind stresses.

Ekman pumping

Wind-induced currents are among the strongest currents in the oceanic surface layer. More
importantly, the depth-integrated Ekman transports rank among the most important causes
of flow in the deeper layers as well, throughout the upper one or two kilometers of the
ocean. This comes about because the Ekman transports converge in some regions and
diverge in others, and vertical flow develops at the bottom of the surface boundary layer to
replace or remove the converging water masses. This process of generation of flow below
the surface layer through vertical movement into and out of it is known as Ekman
pumping. Because of its importance for the distribution of hydrographic properties below
the surface layer it is worth looking at this process in some detail.

We see from eqn (4.1) that variations of Ekman layer transport can result from two
factors, the change of the Coriolis parameter with latitude and the structure of the wind
stress field. In most situations the variation of f is small and Ekman pumping is dominated
by spatial variations of wind stress. Figure 4.1 shows some examples. Between the Trades
and the Westerlies (boxes A and B) the wind generates a mean flow into the box, resulting
in Ekman pumping or downwelling. Poleward of the maximum Westerlies (box C) the net
flow is directed outward, giving negative Ekman pumping ("Ekman suction") or upwelling.
In all situations (except near the equator) the vertical velocity w at the base of the Ekman
layer (positive for downwelling, negative for upwelling) is given by the divergence of the
Ekman transport: - ρow = ∂Mex / ∂x + ∂Mey / ∂y where Mex and Mey are the components
of M e towards east and north respectively. From Rule 3 these components can be
expressed, away from the equator, in terms of wind stress:

- ρow = curl (τ / f) = ∂ (τy / f) / ∂x - ∂ (τx / f) / ∂y (4.2)

where τx  and τy  are the x- and y-components of τ. (The curl of a field of vectors is a
vector which measures the tendency of the vectors to induce rotation. It has three
components (curlx, curly, and curlz); but in oceanography only the third component which
relates to rotation around the vertical is of interest, and the index z is never written.  A
visualization of the relationship between Ekman pumping and wind stress curl is shown in
Figure 4.2). Fig 4.3 gives a map of the annual mean of curl(τ/f) for the world ocean. Most
of the ocean is characterized by Ekman transport convergence or downwelling, indicated by
an extensive region of negative curl(τ/f) from the tropics to the temperate zone. Positive
curl(τ/f) or upwelling is found on the poleward side of the core of the Westerlies.

The basis of Figure 4.3 is eqn (4.2), which is not defined near the equator and along
boundaries. What happens there can be understood if we return to the box models of
Figure 4.1. The equatorial region (box D) is often characterized by upwelling: In the
equatorial Atlantic and eastern Pacific Oceans winds are westward and fairly uniform; the
change of sign of the Coriolis parameter across the equator produces Ekman transports of
opposite signs at about 2°N and 2°S, i.e. Ekman suction and upwelling. Discussion of the
situation in the equatorial Indian Ocean is left to Chapter 11 since it varies with the
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monsoon. Along most eastern boundaries (box E) the wind stress is directed equatorward;
Ekman transport is directed offshore but cannot come out of the coast - again, upwelling
must occur. Near western boundaries the dynamics are governed by the western boundary
currents; Ekman layer dynamics are often strongly modified, or negligible, in these regions.

Fig. 4.1. Illustration of Ekman transport and
Ekman pumping, based on the eastern Pacific
Ocean. Full arrows indicate the wind, open arrows
the Ekman transport resulting from the
corresponding wind stress. Note the change of
direction of the Ekman transport relative to the
wind across the equator and the decrease of the
Ekman transport, for equivalent wind stresses,
with distance from the equator. Box A is between
the Trade Winds and the Westerlies in the northern
hemisphere; the Ekman transports at the northern
and southern edges point into the box. The mean
wind stresses along the east and west sides of the
box do not add or subtract much to the transport
budget. The result is net inflow into the box
(convergence), or Ekman pumping and
downwelling. Box B is the mirror image of A  in
the southern hemisphere; the Ekman transports
are to the left of the wind, and there is again net
inflow (convergence), or Ekman pumping and
downwelling. Box C  is located south of the
maximum Westerlies; the Ekman transport i s
stronger at the northern edge than at the southern
because the wind stress decreases towards the
south. There is small net outflow (divergence), or
Ekman suction and upwelling. Box D  is on the
equator. The winds stress does not vary much
across the box, but the Coriolis parameter i s
small and changes sign across the equator, giving
opposite directions for the Ekman transport north
and south of the equator. The result is very large
net outflow (divergence), or Ekman suction and
upwelling. Box E is near an eastern coastline in
the Trade Wind region. The wind stress i s
equatorward along the coast; the Ekman transport
is directed offshore at the western edge but zero at
the coast. The result is net outflow (divergence),
or Ekman suction and upwelling.
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Fig. 4.2. A sketch of two wind fields and related Ekman transport, (a) with zero wind stress
curl, (b) with non-zero wind stress curl.   The tendency of the wind field to in-duce rotation
can be visualized by the drifting balloon AB; it does not rotate in (a) but rotates clockwise in
(b). It is seen that Ekman pumping in the ocean occurs only where rotation is present in the
atmosphere. (The variation of the Coriolis parameter has been neglected to simplify
matters.)

Fig. 4.3. Annual mean distribution of curl(τ/f), or Ekman pumping, calculated from the
distribution of Fig. 1.4 (10-3 kg m2 s-1). Positive numbers indicate upwelling. In the equatorial
region (2°N - 2°S, shaded) curl(τ/f) is not defined; the distribution in this region is inferred from
the dynamical arguments of Fig. 4.1 and  is not quantitative.
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The Sverdrup balance

We now return to the question raised at the end of the last chapter: What replenishes the
bulges in the subtropical thermocline, seen (for example) in the temperature distribution of
Fig 2.5 at 500 m depth? The answer is found by combining the dynamics of the ocean
interior and western boundary currents with the dynamics of the Ekman layer.

It was shown in the last chapter that in the absence of forcing, thermocline bulges in a
11/2 layer ocean move westward at Rossby wave speed. We obtained an equation for the
bulge movement, or local depth variation of the thermocline:

∂H / ∂t =  (β g / f 2 (y) ) (Δρ / ρo) H ∂H / ∂x   . (4.3)

Bulge movement is a consequence of geostrophic transport convergence of anticyclonic
eddies in the west and divergence in the east as shown in Figure 3.4, so eqn (4.3) can be
seen as a balance equation for the convergence of the flow field. Now, the bulges seen in
Figure 2.5c represent the annual mean, i.e. a steady state; so we must have ∂H/∂t = 0. We
achieve this by adding the convergence of the Ekman transport (Ekman pumping). The
change in thermocline depth produced by Ekman pumping is the vertical velocity at the
base of the Ekman layer. Taking this quantity from eqn (4.2) and adding it to eqn (4.3)
gives the steady state balance as

(β g / f 2(y) ) (Δρ / ρo) H ∂H / ∂x  =  curl (τ / ρof)  . (4.4)

We can consider the right-hand side as continuously generating new bulges or depressions,
which then migrate westwards as Rossby waves. The net effect is that in the steady state,
an east-west gradient of H is set up which is in geostrophic balance, and that the mass
divergence associated with this gradient matches the Ekman pumping convergence. The fact
that energy propagates westward is no longer obvious in the steady state; but it does occur -
the intense western boundary currents in each ocean are in fact dissipating the energy that
has been fed into the ocean interior from the wind field by Ekman pumping. Because the
energy which is fed into these narrow currents is the result of accumulation of energy from
the wind field over the entire ocean surface, the western boundary currents are very intense,
jet-like features. They achieve energy dissipation through bottom friction on the shelf and
slope, and by spawning eddies and ejecting them into the open ocean.

Equation (4.4) is one form of an equation known as the Sverdrup relation for the 11/2
layer ocean. It was derived by Hans Ulrik Sverdrup and allows us to determine H
everywhere for any ocean basin from a knowledge of H at its eastern boundary. (Knowledge
of H at the western boundary is not of much use, since the Sverdrup relation includes only
geostrophy and Ekman layer dynamics and does not apply to the western boundary
currents.) We note that the right-hand side of eqn (4.4) is directly obtainable from the wind
stress data. In other words, the depth variation of the thermocline, one of the key features of
the oceans, can be determined from atmospheric observations alone! The left hand side of
eqn (4.4), on the other hand, contains the essence of regional oceanography, namely the
observations of temperature and salinity. In the 11/2 layer model which we used to simplify
our description of ocean dynamics, the role of the observations is reduced to a determination
of thermocline depth. In the more realistic case of a continuously stratified ocean the
Sverdrup relation takes on the form (on multiplying both sides by f 2 / β )
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g ∂P / ∂x  = f 2 / β  curl (τ / ρof)   , (4.5)

where P(x,y) =⌡⌠

zo

0
 h(x,y,z) dz (4.6)

has dimension m2 and is the depth-integral of the steric height h from an assumed depth of
no motion zo to the surface: ∂P/∂x is the generalization of H (Δρ/ρo)∂H/∂x in the 11/2
layer model. Note that (4.5) is well-defined at the equator. Evaluation of the right-hand side
of eqn (4.5) gives, using β = df / dy,

g ∂P / ∂x  =  f / (β ρo)  curl (τ)  +  τx / ρo  . (4.7)

All three terms in eqn (4.7) are well-defined everywhere, including the equator. The spurious
"infinite" speed of Rossby waves at the equator does not affect the steady state which those
waves bring about.

In the form shown in eqn (4.5), both sides of the Sverdrup relation are completely well-
defined by available data - the right-hand side comes from the annual mean wind stress
shown in Figure 1.4, while the left-hand side comes from the annual mean density field
derived from the data shown in Figure 2.5. This provides us with a powerful means for
testing the validity of our concept of ocean dynamics. How well, then, do the two sides of
the Sverdrup relation match one another?

Figure 4.4 shows a global map of depth-integrated steric height calculated from
atmospheric data, i.e. using the right-hand side of the Sverdrup relation (eqn (4.5)) in
combination with appropriate boundary conditions to ensure that no mass flux occurs
through the eastern boundary (Godfrey, 1989). The same quantity is also shown in
Figures 4.5 and 4.6, this time calculated from oceanographic information, i.e. based on the
left hand side of eqn (4.5) for two different depths of no motion, 1500 m and 2500 m.
General agreement between the results from both data sets is observed in the subtropics. All
three diagrams show a maximum value of P near the western boundary of each ocean at
30° - 40° N or S. The position of this maximum is well represented by Figure 4.4 in
each basin. The number of contours from east to west in each ocean basin is fairly well
represented, though the wind-based calculation produces a larger transport than the
calculation based on ocean temperatures and salinities. This could be due, as has been
suggested by researchers, to an inappropriately large choice of the constant Cd in the wind
stress calculation of Hellerman and Rosenstein (1983).

It is also remarkable that over most of the oceans the choice of reference level for the
integration of the oceanographic data fields does not influence the results very much. This
indicates that flow between 1500 m and 2500 m depth is quite small, making both depths
probably reasonably valid choices for a depth of no motion. Substantial differences between
the strengths of the flows predicted by Figures 4.5 and 4.6 occur in the Antarctic region,
indicating that at these latitudes substantial flow occurs below the 1500 m level. This
aspect of the circulation will be discussed in detail in Chapter 6.

A major failing of the calculation from atmospheric data occurs west of the southern end
of Africa, where it shows very strong north-south gradients of P. These gradients imply an
intense geostrophic flow across the South Atlantic Ocean to South America, which then
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flows about 500 km southward and returns to the Indian Ocean. In reality, such intense
flows which pass through an open ocean region are unstable, particularly when they
"double back" on themselves as in Figure 4.4 southwest of South Africa; the real Agulhas
Current outflow turns eastward to join the Antarctic Circumpolar Current, as seen in
Figures 4.5 and 4.6. The chapters on the Indian Ocean will take this up further.
The outflows from the western boundary currents of the North Atlantic and North Pacific
Oceans are also not well represented by the model derived from the wind data. Both are
underestimated in magnitude; and the Gulf Stream separation occurs near Labrador, rather
than at its observed location near Cape Hatteras in the northern USA. However, considering
the simplicity of the concept of Ekman pumping, Rossby wave propagation, and the
Sverdrup balance as the result of an equilibrium between these two phenomena, it is
pleasing to see to what large degree the atmospheric and oceanographic data sets available
today confirm its validity. The model certainly accounts for a considerable fraction of what
we see in the depth-integrated flow of the world ocean. The plan for the World Ocean
Circulation Experiment (Figure 2.4) is therefore based on the concept that a systematic
survey of temperature and salinity, augmented by direct current measurements through
moorings in regions where the Sverdrup relation does not hold, will result in a reliable
description of the oceanic circulation.

The stream function and depth-integrated transports

Without doubt, depth-integrated steric height P is the best quantity to test the Sverdrup
relation. Unfortunately, it does not provide the most convenient visualization of the flow
field on oceanic scales, since its distribution combines variations of depth-integrated flow
with the latitude-dependence of the Coriolis parameter. A better representation is achieved
by introduction of a stream function which eliminates f from the picture. The direction of
the total net transport between the assumed depth of no motion and the surface is then
indicated by the direction of the streamlines, and its magnitude is inversely proportional to
the distance between them. Because there cannot be any flow through the coast, coastlines
are streamlines by definition. If the coast is continuous it coincides with a single
streamline, i.e. the value of the stream function along the coast is the same. It is also
possible to estimate the flow around major islands such as Australia and New Zealand and
allocate stream function values to their coasts (Godfrey, 1989).

If we neglect the small flow from the Arctic into the north Pacific Ocean and consider
Bering Strait closed, the world ocean is surrounded by a single continuous coastline (formed
by the Asian, African and American continents) and contains only few large islands
(Antarctica, Greenland, Iceland, Australia, New Zealand, Madagascar). Figure 4.7 shows the
volume transport stream function for this continuous domain. Since the stream function
calculation is based on Sverdrup dynamics it can only proceed starting from eastern
boundaries and extend to the outer edges of the western boundary currents. The differences in
stream function values across the gap near the western coastlines give the transport of the
western boundary currents. Details of the depth-integrated flow near the equator that are
masked in Figure 4.4 by the variation of the Coriolis parameter (in particular the sign
change of f across the equator) come out clearly in the stream function map. The North
Equatorial Countercurrent, flowing eastward between 5° and 15°N in the North Pacific
Ocean, is seen as a major feature. The corresponding feature in the South Pacific Ocean is
extremely weak and restricted to an area south-east of Papua New Guinea. A strong counter-
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current is seen in the southern Indian Ocean. This asymmetrical distribution of currents
reflects similar asymmetries of the annual mean wind stress field of Figure 1.4.

 Fig. 4.4. Depth-integrated steric height P, calculated from the right-hand side of the Sverdrup
relation (eqn (4.5)), using the data from Hellerman and Rosenstein (1983). Units are 101 m2. For
details of the integration procedure see Godfrey (1989).

An important thing to note for later reference is the magnitude of the western boundary
currents generated by the Sverdrup mechanism: 50 Sv for the Kuroshio, 30 Sv for the Gulf
Stream and the Brazil Current, 25 Sv for the East Australian Current, and 70 Sv for the
Agulhas Current; independent estimates of the flow between Australia and Indonesia of
16 Sv were used for obtaining the latter two transports. To give some feeling what these
numbers mean we note that 50 Sv correspond to about 4000 cubic kilometers per day!
When it comes to the discussion of individual oceans it will become clear that none of
these transport estimates is very accurate, because regional effects modify the boundary
currents. Nevertheless, there can be no doubt that the currents are wind-driven, in the sense
that they provide continuity of transport for the Sverdrup regime of the ocean interior.

Another feature of Figure 4.7 worth noting is the existence, in each ocean basin, of
circulations bounded by contours of zero stream function value. The circulation cells
bounded by zero stream function contours are known as "gyres"; those lying between the
maximum westerlies and Trades in Figure 4.7 are known as the subtropical gyres.  Within
each subtropical gyre, the wind stress curl generates equatorward depth-integrated flow in the
ocean interior, which returns poleward in the western boundary currents. Poleward of the
subtropical gyres in the Northern Hemisphere are the subpolar gyres. Flow within these is
poleward in the interior and equatorward at the western boundary. The convergence of the
western boundary currents of the subtropical and subpolar gyres produces the polar fronts,
regions  of  strong  horizontal  temperature  and salinity gradients  where  warm subtropical
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Fig. 4.5. Depth-integrated steric height P, from the left side of the Sverdrup relation (eqn
(4.5)), using the data from Levitus (1982), for a depth of no motion of 1500 m. Units are
103 m2.

Fig. 4.6. Depth-integrated steric height P, from the left side of the Sverdrup relation (eqn (4.5)),
using the data from Levitus (1982) for a depth of no motion of 2500 m. Units are 103 m2.
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water meets cold subpolar water along the zero streamline contour (compare Figure 2.5).
Further gyres are evident between 15°N and 10°S; they form part of the complex equatorial
current system which will be discussed in later chapters and are not usually recognized as
gyres by name.

Fig. 4.7. Stream function for the world ocean, calculated from the wind stress data of
Hellerman and Rosenstein (1983). Contour interval is 10 Sv.

It can be shown that if the winds were purely zonal and did not vary with longitude, the
zero stream function contours would coincide with zero contours of wind stress curl. In
other words, subject to the same assumptions, the boundaries of the gyres would coincide
with the maximum westerly wind stresses, and with the maximum Trades. Purely zonal
winds with no longitudinal variation are of course a somewhat poor description of the real
mean winds; but the assumption is useful as a first approximation. The lines of zero stream
function in Figure 4.7 do indeed either lie close to the maximum westerlies, or the
maximum Trades, as can be seen by comparison with Figure 1.2.

Since the depth-integrated flow cannot cross streamlines, there is no net transport of mass
between adjacent gyres (provided, that is, that the conditions of the Sverdrup circulation are
met). This does not mean, however, that no water crosses from one gyre into another. In
fact, transport in the surface layer across zero streamlines is maximum because the zonal
wind stresses along these boundaries - and as a consequence the Ekman transport - are at a
maximum. The surface layer transport is balanced by geostrophic transport below, so the
net transport is zero. At the equatorward boundary of the subtropical gyres the Ekman
transport is directed poleward and moves warm water away from the tropics, while the
compensating deep geostrophic flow brings cold water into the tropics. Thus, although
there is no net mass transport across the zero stream function contour, there is substantial
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poleward transport of heat. To give an example, a simple calculation with the winds of
Figure 1.2 shows that in the north Pacific Ocean the northward Ekman transport across the
southern edge of the subtropical gyre at about 16°N (the position of the strongest Trades)
amounts to some 28 Sv, with equal and opposite (and colder) geostrophic flow below.
Similarly, there is a net poleward Ekman flux of 29 Sv across the northern edge of the
south Pacific subtropical gyre at about 14°S, again compensated by equal and opposite
geostrophic flow of lower mean temperature, so that heat is transported poleward here also.
Thus the simple wind-driven circulation of Figure 4.7 which gives such a good illustration
of the use of Sverdrup dynamics can be very misleading when it comes to a discussion of
the amount of heat carried by the ocean.

Fig. 4.8. Annual mean of eddy energy in the ocean as observed by satellite altimeter during
December 1986 – November 1987. The eddies are detected by measuring the shape of the sea
surface, which bulges downward in cyclonic and upward in anticyclonic eddies as explained in
Figures 2.7 and 3.3. The quantity shown is the standard deviation of observed sea level (cm)
from the mean sea level over the observation period. From Fu et al. (1988).

This concludes our discussion of ocean transport dynamics. A legitimate question at this
point could be: If we go out to sea on a research vessel and make some observations, to
which degree can we expect to see our picture of the large oceanic gyres and associated
currents confirmed by the new data? A first answer is of course that Figures 4.5 and 4.6 are
based on observations; they should therefore reflect the real world. A second answer is that
they are based on annual mean data distributions. The question is then, can we expect to
find the annual mean situation if we go out to sea and take a snap shot of the temperature
and salinity distribution?

The answer is - yes, if we make our study area large enough. A synoptic survey of the
subtropical north Atlantic Ocean would show the subtropical gyre. However, superimposed
we would find a wealth of other structures, mainly eddies of all shapes and sizes. If we
restricted our survey to a square of some 200 km base length we could find it very difficult
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to recognize the mean flow. The water in the ocean is constantly mixed, a major mixing
mechanism being eddy mixing. Figure 4.8 shows mean eddy energy in the ocean. The
western boundary currents (Gulf Stream, Brazil Current, Kuroshio, East Australian Current,
Agulhas Current) and the Circumpolar Current stand out as regions of particularly high
eddy energy. Eddies in these regions are so energetic that the associated currents can reverse
the direction of flow. In the western boundary currents they turn the water movement from
poleward to equatorward; poleward mean flow is only observed if the study area is larger
than the typical eddy size, which is of the order of 200 km diameter. Away from the
boundary currents eddy energy goes down rapidly; but annual mean velocities decrease as
well, and eddies can still reverse the observed direction of mean flow if the study area is too
small. Figure 4.9 demonstrates this for the area of the Azores Current in the eastern north
Atlantic Ocean. In the example the cruise covered an area of roughly 550 . 550 km with
86 stations. At least three eddies are seen, but the Azores Current is still visible meandering
through the region between the eddies. A smaller study area would not show much
resemblance between the annual mean and the actual situation.

Fig. 4.9.  Eddies in the Azores Current. (a) Mean surface flow based on historical data. (b) The
box of panel (a) enlarged, showing the Azores Current and eddies as indicated by the temperature
of the surface mixed layer, during April 1982. (Horizontal temperature gradients indicate a
sloping interface and associated eddies in the manner of Fig. 3.3.) From Käse et al. (1985).


