ICM Logo Matthias Tomczak

Descripción Cualitativa y Ciencia Cuantitativa


Durante muchos años la Universidad Flinders de Australia del Sur ha ofrecido un típico de Ciencias de la Tierra en dos partes para estudiantes del primer año. El tópico para el primer semestre, Ciencias de la Tierra 1A, trataba el lugar de la Tierra en el universo, aspectos de geología y una introducció a la geofísica y la hidrología. La meteorología y la oceanografía se trataban en el tópico de segundo semestre, Ciencias de la Tierra 1B.

A partir del año 2000 los dos tópicos se dictan como Ciencias de la Tierra 1, que sigue siendo el tópico de primer semestre con contenido idéntico, y Ciencias Marinas 1 como tópico de segundo semestre. Ciencias Marinas 1 aún contiene materia cuantiosa sobre meteorología y oceanografía física, pero contiene además una introducción elemental a algunos aspectos de la biología marina.

Estos apuntes representan el contenido del tópico para oceanografía física. Además hay dos clases introductorias que ubican los aspectos atmosféricos y oceanográficos del tópico en el contexto de las ciencias exactas; estas clases son una versión abreviada de las dos primeras clases dictadas al comienzo del semestre.

El tópico para hoy: los conceptos de ciclos y balances

La meteorología y la oceanografía son ciencias físicas que intentan comprender procesos en el ambiente y que los describen, analizan y proyectan de manera cuantitativa.

Una manera común de expresar cuantitativamente los procesos es a través de los conceptos de ciclos y balances.

En escalas de tiempo de la magnitud de la historia geológica, todos los procesos en la Tierra se basan en un reservorio constante de materiales.

Las formas en que los materiales se presentan cambian constantemente. En un estado de equilibrio este cambio ha de ser cíclico.

El concepto de ciclo expresa este principio de equilibrio de una manera cualitativa. El concepto de balance lo hace cuantitativo al especificar la rapidez de cambio entre diferentes estados del ciclo.

Esta clase discute cuatro ejemplos.


El Ciclo del Agua

Figura 1

La Tierra es el único planeta en el sistema solar donde el agua líquida se encuentra en la superficie. El agua es la única sustancia que, dentro de los rangos de presión y temperatura que se encuentran en la superficie de la Tierra, está presente en las fases sólida, líquida y gaseosa. El ciclo del agua es, por lo tanto, de importancia fundamental para muchos procesos únicos en la Tierra. Los planetas exteriores de nuestro sistema solar (Júpiter, Saturno, Urano, Neptuno y Plutón) y sus lunas son demasiado frías para que el agua exista excepto en forma de hielo. Asimismo, los planetas interiores (Mercurio y Venus) son demasiado calientes para tener agua excepto en forma de vapor de agua. Actualmente, Marte es demasiado frío, pero posiblemente pudo haber tenido agua líquida en su superficie en alguna época de su historia. Por lo tanto, en la etapa actual del desarrollo del sistema solar, la Tierra es el único planeta que contiene agua en todas sus fases.

Al igual que muchos otros ciclos, el ciclo del agua enlaza procesos que actúan en el mundo viviente y el mundo no viviente: La precipitación y la evaporación oceánica enlazan el océano y la atmósfera; la evaporación desde la tierra y la transpiración desde la vegetación enlazan la atmósfera con la biosfera.

En el contexto de la meteorología y la oceanografía, el efecto de la biosfera se expresa cuantitativamente como un solo proceso, evapo-transpiración. El ciclo del agua luego describe un componente básico del sistema combinado océano-atmósfera.

Asociado con cada ciclo hay un balance. Los ciclos representan una descripción cualitativa de los procesos, los balances los convierten en enunciados cuantitativos. Se hace distinción entre los balances estáticos, que proveen un resumen de qué cantidad de un material en particular está disponible y cómo se encuentra distribuido entre diferentes compartimentos, y los presupuestos dinámicos, que cuantifican qué tan rápidamente el material se mueve entre los compartimentos. Los ciclos definen el proceso; los balances permiten obtener respuestas a preguntas como: "¿ Cómo se afecta el ciclo del agua si tal o cual porcentaje de los terrenos baldíos de Australia Occidental se limpian y se utilizan para el cultivo del trigo ?"

El Balance del Agua

La distribución del agua en la Tierra (el balance estático); este balance muestra dónde se encuentra el agua:

RegiónVolumen (103 km3)% del total
océanos1.350.00094,12
agua subterránea60.0004,18
hielo24.0001,67
lagos2300,016
humedad en suelos820,006
atmósfera140,001
ríos1-
M. J. Lvovich: World water balance; in: Symposium on world water balance,
UNESCO/IASH publication 93, Paris 1971.

El balance estático demuestra la importancia de las capas de hielo para el ciclo global del agua: cualquier cambio en las condiciones atmosféricas u oceánicas que libere una parte significativa del agua que está almacenada actualmente en el hielo producirá un cambio notable en el ciclo del agua. La atmósfera parece ser insignificante en comparación; sin embargo, el papel importante que juega la atmósfera se hace evidente cuando se estudia el balance dinámico.

El Balance del Flujo de Agua

Las ramas del ciclo del agua en la Tierra (el balance dinámico); este balance muestra cómo el agua se mueve entre la atmósfera y la hidrosfera:

ProcesoCantidad (m3 por año)
precipitación sobre el océano3,24 . 1014
evaporación desde el océano-3,60 . 1014
precipitación sobre tierra0,98 . 1014
evaporación desde tierra-0,62 . 1014
ganancia neta en tierra = caudal de ríos0,36 . 1014

El balance de flujo demuestra que la mayor parte del intercambio entre los compartimentos se realiza entre el océano y la atmósfera, así que la atmósfera constituye un elemento extremadamente dinámico en el sistema, a pesar de que contiene sólo una pequeña cantidad de agua en un momento dado. El intercambio de agua entre el océano y la atmósfera en el transcurso de unas pocas décadas es equivalente a la cantidad total de agua almacenada en las capas de hielo.


El Ciclo de la Sal

En el ciclo de la sal están involucrados el oéano, la geosfera y en grado mínimo la atmósfera.

Los minerales son disueltos de las rocas por las aguas que fluyen sobre y debajo de la tierra y por erosión superficial. Tales minerales entran en los ríos y así fluyen al océano, donde se acumulan, lo que hace que el agua del mar sea salada. Son removidos del agua por acción química y así entran en los sedimentos.

Los sedimentos se utilizan para formar rocas nuevas, lo que lleva los minerales de nuevo a la geosfera.

La sal entra en la atmósfera en forma de gotitas minúsculas levantadas por los vientos que soplan sobre las olas del mar. Dicha sal puede ser llevada hasta la tierra, lo que constituye un camino mínimo desde el mar hasta la tierra en el ciclo global de la sal.

Puesto que el ciclo de la sal funciona en escalas de tiempo tan largas, establecer un balance estático de la sal no es relevante para la oceanografía.

Elementos del Balance del Flujo de la Sal

El ciclo de la sal opera en escalas de tiempo tan largas que establecer un balance de flujo de la sal no es una tarea importante para la oceanografía. La siguiente tabla da una idea de las escalas de tiempo que están involucradas:

ElementoAbundancia en la corteza (%)Tiempo de residencia (años)
algunos componentes principales de la sal marina:
sodio (Na)2,460.000.000
cloro (Cl)0,01380.000.000
magnesio (Mg)2,310.000.000
algunos componentes menores de la sal marina:
plomo (Pb)0,001400
hierro (Fe)2,4100
aluminio (Al)6,0100

El concepto de salinidad es el tópico de la clase 3.


El Ciclo de los Nutrientes

Figura 2

Los nutrientes son esenciales para la vida de plantas y animales. Ellos forman parte de un ciclo terrestre y otro ciclo oceánico.

En la tierra los nutrientes son recogidos del suelo por las plantas y regresan al suelo por la descomposición de la materia orgánica muerta. Este es un ciclo cerrado en una escala de tiempo relativamente corta, determinada por el proceso de descomposición y por los tiempos de vida de plantas, animales y seres humanos. En sociedades humanas desarrolladas, el ciclo se rompe sólo por el consumo de nutrientes por las poblaciones de grandes ciudades, las cuales no devuelven los nutrientes a la tierra sino que los desechan en sistemas cloacales. La pérdida de nutrientes que resulta así por causa de la agricultura es compensada por la importación de fertilizantes minerales desde el reservorio de minerales en la geosfera.

Esta influencia humana introduce un enlace con un ciclo de nutrientes con una escala de tiempo mucho más larga, determinada por la formación de depósitos minerales. Esta situación es similar a la que se discute con respecto al ciclo del carbono más adelante, pero no tiene las mismas consecuencias inmediatas. El aumento de nutrientes disponibles para el ciclo rápido de los nutrientes, del cual dependen los procesos de vida y la agricultura, es muy lento, y gran parte de los minerales introducidos se desvían del ciclo rápido de los nutrientes a través del componente oceánico.

En el océano la utilización de los nutrientes por las plantas ocurre en la capa superficial donde penetra la luz solar y ocurre la fotosíntesis. La mayor parte de los nutrientes son removidos de esta zona eufótica y transferidos al océano profundo cuando los organismos muertos descienden al fondo oceánico donde salen del ciclo rápido de nutrientes. En las capas más profundas la materia orgánica es remineralizada, es decir, los nutrientes vuelven a disolverse. Por lo tanto el océano no puede soportar ecosistemas altamente productivos excepto en lugares donde los nutrientes son devueltos a la zona eufótica desde capas más profundas en las regiones de afloramientos o surgencias. El ciclo de los nutrientes se discute con mayor detalle en la clase 5, la surgencia se trata en la clase 6.


El Ciclo del Carbono

Figura 3

El ciclo del carbono opera en dos escalas de tiempo enormemente diferentes. Están involucrados el océano, la atmósfera, la geosfera y la biosfera.

En la escala de tiempo geológica, el carbono es liberado a la atmósfera y al océano por medio de la meteorización, que descompone las rocas de carbonatos tales como las calizas. El carbono regresa a este enorme reservorio de almacenaje cuando nuevas rocas son formadas a través de la deposición de sedimentos.

En la escala de tiempo climática, la cual es mucho más corta, el carbono se intercambia entre la atmósfera, el océano y organismos tanto vivientes como muertos.

El ciclo del carbono incluye realmente ambas escalas de tiempo, pero para la mayoría de los fines prácticos se excluye generalmente la escala geológica del balance del carbono y del balance del flujo del carbono.

Esta separación de las escalas de tiempo ha sido perturbada significativamente por la quema de combustibles fósiles. Este proceso agrega dióxido de carbono a la atmósfera, lo que aumenta la capacidad de la atmósfera para retener energía térmica recibida del sol (esto es el efecto invernadero). Las tablas siguientes aportan algunas estimaciones actuales del balance del carbono y del balance del flujo del carbono.

El balance del carbono
RegiónCantidad (Gt carbono; 1 Gt = 1015 g)
antes del cambio antropogénicodespués del cambio antropogénico
plantas terrestres610550
suelo y humus1.500sin cambio
atmósfera600750 (+3,4 por año)
océano superior1.0001.020 (+0,4 por año)
vida marina3sin cambio
carbono orgánico disuelto700sin cambio
a media profundidad y en el océano profundo38.00038.100 (+1,6 por año)

El balance del flujo de carbono
Sub-balances en equilibrio se identifican por (a) - (d).
deacantidad (Gt de carbono por año; 1 Gt = 1015 g))
naturalanthropogénico
atmósferaplantas terrestres100 (a)
océano 74 (d)18
plantas terrestresatmósfera50 (a)
suelo y humus50 (a)
suelo y humusatmósfera50 (a)
deforestaciónatmósferaalrededor de 1,9
combustible fósilatmósferaalrededor de 5,4
drenado al océanoocéano superior0.4
a media profundidad y en el océano profundo1,6
ríosocéano0,8
océano superioratmósfera74 (d)16
vida marinaalrededor de 40 (b)
a media profundidad y en el océano profundo90 (c)5,6
vida marinaocéano superior alrededor de 30 (b)
a media profundidad y en el océano profundo4 (b)
carbono orgánico disuelto6 (b)
carbono orgánico disueltoa media profundidad y en el océano profundo6 (c)
a media profundidad y en el océano profundoocéano superior100 (c)
sedimento0,13

¿ Qué hemos aprendido hoy ?

  1. El estado del ambiente está determinado por un equilibrio de fuerzas.

    La definiciçon de varios ciclos, tales como el ciclo del agua, el ciclo de la sal, el ciclo de los nutrientes y el ciclo del carbono, constituye una manera útil de describir el balance que resulta de este equilibrio de fuerzas.

  2. El concepto de los ciclos ayuda a entender el mundo; pero para manejar el ambiente y evitar errores, el concepto ha de ser convertido en una medición cuantitativa.

    Los balances y los balances de flujo convierten el concepto de ciclos en enunciados cuantitativos.